张拉式膜结构
通过钢索与膜材共同受力形式稳定曲面来覆盖建筑空间,它是索膜建筑的代表和精华,具有高度的形体可塑性和结构灵活性。
骨架式膜结构
通过自身稳定的骨架体系支撑膜体来覆盖建筑空间,骨架体系决定建筑形体,膜体为覆盖物。
空气式膜结构
通过空气压力支撑膜体来覆盖建筑空间,它形体单一,运用较少。
优点:
更自由的建筑形体塑造
多变的支撑结构和柔性膜材使建筑物造型更加多样化,新颖美观,同时体现结构之美,且色彩丰富,可创造更自由的建筑形体和更丰富的建筑语言。
更好的经济效益
膜建筑屋面重量仅为常规钢屋面的1/30,这就降低了墙体和基础的造价。同时膜建筑奇特的造型和夜景效果有明显的“建筑可识性”和商业效应,其价格效益比更高。
更短的施工周期
膜工程中所有加工和制作依设计均可在工厂内完成,在现场只进行安装作业。相比传统建筑的施工周期,它几乎要快一倍。
更低的能源损耗
膜材有较高的反射性及较低的光吸收低,并且热传导性较低,这极大程度上阻止太阳能进入室内。另外,膜材的半透明性保证了适当的自然漫散射光照明室内。
更大跨度的建筑空间
由于自重轻,膜建筑可以不需要内部支撑面大跨度覆盖空间,这使人们可以列灵活、更有创意地设计和使用建筑空间。
基材:
膜材基本上为一种织布,织材由纤维构成。一织品结构的材料选择、适当的设计、施工、制造及安装,综合这几点能够确保结构的品质。结构的好坏主要取决于材料
的选择。运用在拉力结构及充气式结构中更为贴切,因为膜材本身亦有载重。大部分的织品结构运用织品更甚于网状物或胶卷。织品主要镀上其它材料或压层以产生
更大的拉力或更强的抗外力。最常见的材料为聚酯压层或镀PVC材质,镀PTFE或镀硅之玻璃纤维材质。网状物、胶卷及其它材料各有其适用范围。
而通常纤维之运用可分为下列数种:
尼龙/ Nylon:
抗拉力较Polyester稍佳,但其弹力系数较低,使得在载重之情形下可能造成皱褶之机率大为升高,且易受湿度变化影响,使得在裁切前后之误差产生,并且易受紫外线影响而逐渐失去抗拉力。
聚酯类/ Polyester:
其抗拉力较Nylon稍差,但因其良好的张力、耐久性、低成本及拉力,在某些使用上其较钢性的特质能弥补其不足。聚酯为最常用之基材。PVC膜片与聚酯胶
合或镀层在较长时间的制造中通常为最经济的方式。胶合物通常由织布或聚酯接合成的网覆盖乙烯基膜而组成(称为基材)。镀层织品一般都会使用高计数、高拉力
之织品镀上一层有弹性的物质以强化拉力。织品制造方式为在镀层前及镀层过程中将聚酯织品置于张力下。结果是织布上不同方向的纱具有鲜明的特性,织品的稳定
性增加,为较轻的织品(200~270gm/m2)。
未处理之Polyester纤维同样易受紫外线破坏,但在保护涂层覆盖后相较于同样处理之Nylon更能抵抗紫外线,因此就实用而言,Polyester之抗紫外线能力较Nylon为佳。
玻璃纤维/ Fiber Glass:
具有高弹性系数及高抗拉强度,但其纤维易因重复之压折而破坏,为克服此点,运用较小直径之纤维稍能降低破坏之程度。玻璃纤维不易受紫外线破坏,因此大为应用于永久性的建构上。
人造纤维Aramids(Kevlar):
具有高弹性系数及高抗撕裂强度,伸缩性较玻璃纤维为佳但不及Nylon与Polyester。曝露于紫外线下同样会使基材之特性恶化。